Amplitude analysis for diffractive resonance production

A. Jackura

(Joint Physics Analysis Center)

Physics Department, Indiana University, Bloomington, IN 47405, USA

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA9/ATHOS4)
Bad Honnef, March 13th – 17th, 2017
Outline

- Theoretical tools for amplitude analysis
- JPAC work on $\eta\pi$ at COMPASS
 - D-wave resonances
Joint Physics Analysis Center (JPAC)

- JPAC is a collaboration between theorists, phenomenologists, and experimentalists to provide phenomenological and data analysis tools for hadron physics
- http://www.indiana.edu/~jpac/

JPAC talks
- A. Szczepaniak - Tuesday 9:45 - 10:30
- A. Hiller Blin - Tuesday 18:00-18:30
- V. Mathieu - Thursday 16:30-17:00
- A. Pilloni - Thursday 17:30 - 18:00
- M. Mikhasenko - Thursday 17:30-18:00
- J. Nyes - Friday 11:30-12:00

Upcoming Workshop
- Summer Workshop on Reaction Theory (June 2017)
- http://www.indiana.edu/~ssrt/
Hadron Spectroscopy

Mass [GeV]

- π
- σ
- f_0
- ω
- ϕ
- a_0
- η'

J^{PC}

- 0^+
- 1^-
- 1^+
- 2^+

Experiment

GlueX - Hall D, JLab

Lattice

Dudek *et al.*, PRD 87, 034505

GlueX - Hall D, JLab

Amplitude Analysis for Resonances

PWA/ATHOS - 03/13/2017
S-Matrix Principles

\[A(s, t) \]

\[m \rightarrow M \]

\[s - \text{channel} \quad \text{decay channel} \]

Crossing

\[A(s + i\epsilon, t) - A(s - i\epsilon, t) \neq 0 \]

Unitarity

\[A(s, t) = \int \frac{ds'}{\pi} \frac{\text{Im} A(s', t')}{s' - s} \]

- Amplitudes must satisfy these constraints, but the constraints do not fix the dynamics
- Resonance content comes from quark models, LQCD, experiment, ...
Resonances

- Resonances are associated with poles of the scattering amplitude in the complex energy plane.
- Understanding of amplitude model important when continuing to complex energies.
- Causality \implies poles lie on unphysical sheets.
- Breit-Wigner:

\[
 t(s) = \frac{g^2}{m^2 - s - im\Gamma\rho(s)}
\]
COMPASS and JPAC are working together on diffractive resonance production in the 3π and $\eta^{(i)}\pi$ channels

$$\pi^- N \rightarrow \pi^- \pi^- \pi^+ N \quad \text{and} \quad \pi^- N \rightarrow \eta^{(i)} \pi^- N$$

[See M. Mikhasenko’s talk on 3π, Thursday 17:30]

- The $\eta\pi$ system is one of the golden modes for hunting hybrid mesons
- Focus on $J^{PC} = 2^{++}$ first to test methodology
- High-energy behavior, $s \rightarrow \infty$ (190 GeV/c π^- beam at COMPASS)
 \implies Exchange process dominated by pomeron
Hadron Spectroscopy

\[\pi^- p \rightarrow \eta \pi p \] at COMPASS

- COMPASS presents \(t' \)-integrated intensities
- Expect \(a_2(1320) \) (Large peak) to be narrow resonance, from quark models and LQCD expect excited \(a_2 \).
- The coupled channel analysis to extract the parameters of the exotic \(P \)-wave is ongoing

\[\pi^- p \rightarrow \eta \pi p \] in \(D \)-wave

Formalism

- $\pi p \rightarrow \eta \pi p$ is high-energy peripheral process \Rightarrow pomeron dominated exchange
- Factorize pomeron-nuclear vertex
- Expand amplitude into partial waves, separates spectrum into J^{PC} sectors. Unitarity constrains partial wave amplitude

$$\Delta_s a_{\ell m\ell}(s) = 2i \rho_{\ell}(s) t_{\ell}^*(s) a_{\ell m\ell}(s)$$
Formalism

- Model for $a_{\ell m_{\ell}}$

$$a_{\ell m_{\ell}} = f_{\ell m_{\ell}}(s) t_{\ell}(s)$$

where $f_{\ell m_{\ell}}(s)$ is flexible model for production mechanism, given by

$$f_{\ell m_{\ell}}(s) = \sum_{n=0}^{\infty} \alpha_n T_n(\omega(s)), \quad \text{with } \omega(s) = s/(s + \Lambda)$$

- Parameterize $t_{\ell}(s)$ by N/D, $\implies t_{\ell}(s) = N(s)/D(s)$, where

$$D(s) = D^0(s) - \frac{s}{\pi} \int_{s_{th}}^\infty ds' \frac{\rho(s')N(s')}{s'(s' - s)}$$

and the model for left-hand cuts is a pole approximation

$$\rho(s)N(s) = g \chi^{\ell + 1/2}(s, m_\eta^2, m_\pi^2)/(s + \Lambda_R)^{2\ell + 3}, \quad \ell = 2$$
Avoiding First Sheet Poles

- Causality ensures resonance poles lie on unphysical sheets
 \[\Rightarrow\] Must parameterize amplitude to satisfy requirements
- For \(s = x - iy \), where \(x > s_{th} \) and \(y > 0 \), find \(\text{Im} \, D^0(s) > 0 \).
 And acceptable parameterization is
 \[D^0(s) = a - bs - \sum_r \frac{c_r}{s_r - s}, \quad \text{provided} \ b, c_r > 0. \]
 This guarantees, along with \(l(s) \), NO poles on the first sheet
 \[\Rightarrow\] these are CDD poles
- Coupled channel systems involve more complicated constraints
Results of Fit

\[D\text{-wave } \pi^- p \rightarrow \eta \pi p \]

- Model fit to COMPASS \(D\)-wave intensity
- Tested stability of fit by changing number of parameters, etc.

AJ et al., in preparation
Results of Fit

- Find two a_2 poles, and one additional pole on second sheet
- Test pole origin by seeing how poles move in complex plane as the phase space coupling vanishes
Pole Movement

AJ et al., in preparation
Two poles were found in the 2^{++} sector

- $M(1320) = 1.308(2)$ GeV, $\Gamma(1320) = 0.113(1)$ GeV
- $M(1700) = 1.71(6)$ GeV, $\Gamma(1700) = 0.30(6)$ GeV
Coupled Channel Analysis

$\eta\pi$ in D-wave

$\rho\pi$ in D-wave

- The a_2 resonance decays predominantly to $\rho\pi$
- Find the addition of the $\rho\pi$ channel does not change the pole position of a_2, but some shifting in the a_2'
 - $M(1320) = 1.31$ GeV, $\Gamma(1320) = 0.11$ GeV
 - $M(1700) = 1.72$ GeV, $\Gamma(1700) = 0.27$ GeV
Summary

- Have constructed analytic amplitude for the fitting of partial wave intensities and the extraction of resonance pole positions for the D-wave $\eta\pi$ system at COMPASS.
- Have performed systematic studies on model to understand stability and nature of poles found.
- Full coupled channel studies are on-going, including the exotic $\eta\pi$ P-wave.