The JSA Graduate Fellowship enabled me to continue my research on amplitude analysis of the $\omega\pi^+\pi^-$ final state in photoproduction, and to measure the tracking efficiencies of charged pions in the GlueX detector. With the travel funds, I was able to attend the APS DNP meeting in October 2019, where I gave a talk on my $\omega\pi^+\pi^-$ analysis, and gave the Hall D update talk at the JLUO Satellite Meeting. I expect to graduate with my Ph.D. in early 2022.

Spin-Exotic Mesons at GlueX

There exists strong experimental and theoretical evidence for spin-exotic mesons, which have quantum numbers inaccessible to quark-antiquark pairs, but their precise nature is unknown. A key goal of GlueX is to map the light-quark meson spectrum in order to identify any patterns that may exist and thus make a better comparison to theory than has been done in the past.

The lightest predicted spin-exotic meson, with quantum numbers $J^{PC}=1^{-+}$ is the $\pi_1(1600)$, which a recent lattice calculation predicts to decay dominantly to $b_1\pi$. Other predicted spin-exotics are also allowed to decay to $b_1\pi$, but the partial widths of their decays have not yet been calculated.

Since the $b_1(1235)$ meson’s dominant decay mode is $b_1 \rightarrow \omega\pi$, the $\omega\pi^+\pi^-$ channel in photoproduction provides access to the $b_1^{\pm}\pi^{\mp}$ system to study both exotic and non-exotic partial waves.

$\omega\pi^+\pi^-$ Amplitude Analysis

With the support of the JSA Graduate Fellowship, I continued my studies on the reaction $\gamma p \rightarrow p\pi^+\pi^+\pi^-\pi^0$, where I worked on removal of non-\omega background from the $\pi^+\pi^+\pi^-\pi^0$ channel, and analyzed angular variables assuming various decay modes of an initial resonance X, including $X \rightarrow b_1^{\pm}\pi^{\mp} \rightarrow \omega\pi^+\pi^-$ and $X \rightarrow \omega\rho \rightarrow \omega\pi^+\pi^-$. I assisted in developing a tool to generate angular distributions for the $\omega\pi^+\pi^-$ Monte Carlo, and used this tool to generate several $\omega\pi^+\pi^-$ samples from 5 different reactions. I spent a good deal of time analyzing these MC samples and applying data selection cuts in order to isolate a clean sample of $\omega\pi^+\pi^-$ recoiling off of a proton.

Figure 1: Invariant mass plot of $\pi^+\pi^-\pi^-\pi^0$ combinations
During the latter period of my JSA Graduate Fellowship, I took on a side project involving analysis of the \(\omega \pi^- \) system recoiling off a \(\Delta^{++} \), which decays to \(p\pi^+ \), using the subset of the \(\omega\pi^+\pi^- \) data sample that I had initially cut away as baryonic background. This “background” sample was large enough, as illustrated in Figure 1, for me to perform an amplitude analysis on the \(\omega\pi^- \) system.

My colleagues at University of Regina are studying the neutral \(\omega\pi^0 \) system, which will enable us to compare charged and neutral exchange mechanisms. Since understanding the decay of the charged \(b^- \) will be crucial to the search for the \(\pi_1(1600) \), this project quickly became my primary focus and will be my dissertation topic.

\(\pi^\pm \) Tracking Efficiencies

While supported by the JSA Graduate Fellowship, I concluded my work determining the tracking efficiencies of charged pions from exclusive \(\omega \rightarrow (\pi^\mp)\pi^+\pi^0 \) reactions at GlueX. I used the \(\omega \) yields from fits to 3\(\pi \) mass plots to count how many pions are “found” versus “produced,” then I take the ratio of those to find the efficiency. I’ve calculated the efficiencies as functions of the kinematic variables \(\phi, \theta, \) and \(p \), as illustrated in Figure 2, and as functions of \(\theta \) vs \(p \). I have also determined how the efficiencies depend on the quality of the charged pion track candidate, by applying cuts to \(P(\chi^2) \) of the track candidate, as well as the 3-momentum and polar angle of the reconstructed track. This study is documented in an internal GlueX analysis note, and is summarized in a paper published in NIM A. It will form a chapter of my dissertation.

![Tracking Efficiencies](image)

Figure 2: Tracking efficiency for \(\pi^\pm \) tracks, determined by data and simulation using two methods. Sourced from [NIM A 987 (2021) 164807](https://doi.org/10.1016/j.nima.2021.164807)

Talks & Publications

- A.M. Schertz, “Amplitude Analysis of the \(\omega\pi^- \) System at GlueX,” Talk. APS April Meeting, Virtual, April 2021.
- A.M. Schertz, “Studies of the \(\omega\pi\pi \) Final State at GlueX,” Talk. DNP Fall Meeting, GWU, October 2019.

Acknowledgements

I want to express my strongest gratitude to the evaluation committee for choosing me as one of this year’s fellowship recipients. I hope that my work over the course of this fellowship period reflects well on their decision. I could not have made it this far without the unwavering support of my advisor, Prof. Justin Stevens. I also want to thank Prof. Zisis Papandreou and Dr. Lubomir Pentchev for writing letters of recommendation. And lastly, thank you to the JSA Initiatives Fund Program, which allows this fellowship to exist.